| 智能視頻分析存在的問題
實際環境中光照變化、目標運動復雜性、遮擋、目標與背景顏色相似、雜亂背景等都會增加目標檢測與跟蹤算法設計的難度,其難點問題主要在以下幾個方面:北京監控安裝。 目標特征的取舍:序列圖像中包含大量可用于目標跟蹤的特征信息,如目標的運動、顏色、邊緣以及紋理等。但目標的特征信息一般是時變的,選取合適的特征信息保證跟蹤的有效性比較困難。
遮擋問題:遮擋是目標跟蹤中必須解決的難點問題。運動目標被部分或完全遮擋,又或是多個目標相互遮擋時,目標部分不可見回造成目標信息缺失,影響跟蹤的穩定性。為了減少遮擋帶來的歧義性問題,必須正確處理遮擋時特征與目標間的對應關系。大多數系統一般是通過統計方法預測目標的位置、尺度等,都不能很好地處理較嚴重的遮擋問題。
兼顧實時性與魯棒性:序列圖像包含大量信息,要保證目標跟蹤的實時性要求,必須選擇計算量小的算法。魯棒性是目標跟蹤的另一個重要性能,提高算法的魯棒性就是要使算法對復雜背景、光照變化和遮擋等情況有較強的適應性,而這又要以復雜的運算為代價。
背景的復雜性:光照變化引起目標顏色與背景顏色的變化,可能造成虛假檢測與錯誤跟蹤。采用不同的色彩空間可以減輕光照變化對算法的影響,但無法完全消除其影響;場景中前景目標與背景的相互轉換,與行李的放下、拿起,車輛的啟動與停止;目標語背景顏色相似時會影響目標檢測與跟蹤的效果;目標陰影與背景顏色存在差別通常被檢測為前景,這給運動目標的分割與特征提取帶來困難。
產品市場競爭的日趨激烈,產品智能化優勢在實際操作和應用中得到非常好的運用,其主要表現在:大大改善操作者作業環境,減輕了工作強度;提高了作業質量和工作效率;一些危險場合或重點施工應用得到解決;環保、節能;提高了機器的自動化程度及智能化水平;提高了設備的可靠性,降低了維護成本;故障診斷實現了智能化等。
|